
B.Vijayalakshmi et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 4), April 2014, pp.135-146

www.ijera.com 135 | P a g e

Microcontroller Protocol for Secure Broadcast in Controller Area

Networks

B.Vijayalakshmi
1
, K. Kumar

2

2
Assistant Professor, MCA Department, Vel Tech University, Avadi, Chennai – 600 062, Tamil Nadu, India.

1
Final Year, Dept. of MCA, Vel Tech University, Avadi, Chennai – 600 062, Tamil Nadu, India.

ABSTRACT
Controller Area Network is a bus commonly used by controllers inside vehicles and in various industrial control

applications. In the past controllers were assumed to operate in secure perimeters, but today these environments

are well connected to the outside world and recent incidents showed them extremely vulnerable to cyber-attacks.

To withstand such threats, one can implement security in the application layer of CAN. Here we design, refine

and implement a broadcast authentication protocol based on the well known paradigm of using key-chains and

time synchronization, a commonly used Mechanism in wireless sensor networks, which allows us to take

advantage from the use of symmetric primitives without the need of secret shared keys during broadcast. But, as

process control is a time critical operation we make several refinements in order to improve on the

authentication delay. For this we study several trade-offs to alleviate shortcomings on computational speed,

memory and bandwidth up to the point of using reduced versions of hash functions that can assure ad hoc

security. To prove the efficiency of the protocol

I. INTRODUCTION
Modern automotive electronics systems are

dis-tributed as they are implemented with software

run-ning over networked Electronic Control Units

(ECU) communicating via serial buses and gateways.

Most systems (but not all; indeed, the automotive

indus-try has started to take actions to prevent

tampering with calibration parameters in engine

control applica-tions) have not been designed with

security in mind. In addition, in the majority of the

cases, there was little or no interest for hackers to

compromise them. The only exception known so far

is the after-market community that tampers with

engine calibrations to increase engine’s performance.

Methods and tools for the verification of the

reliability of automotive electronics systems against

random failures are commercially available.

However, no security aspect is included as part of the

hardware and software architecture development

process and no standard communication protocol has

any built-in provisions to prevent or mitigate attacks.

Communication networks are vulnerable as they en-

able unauthorized access in a relatively straight for-

ward manner as all the communications between the

ECUs in the vehicle are performed with no authen-

tication [2]. Authentication mechanisms ensure that

sender and receiver identities are not compromised

and thus, the sender and the receiver are who they are

claiming to be. Unfortunately, current communi-

cation network protocols, including Controller Area

Network (CAN), FlexRay, MOST, and LIN have no

authentication (or at best have CRC mechanisms to

the potential exists for an automotive ECU to be infil-

trated by an attacker, who can then potentially gain

access, via a serial communication bus, to an array of

other ECUs. guarantee data integrity) and send their

messages in the clear. Hence, room for fraudulent

communi-cations between ECUs exists. For example,

in the CAN protocol, masquerade attacks followed by

re-play attacks

ECU pretending to be another ECU by

sending/replaying a message the ECU is not en-titled

to send) are likely to happen as messages ex-changed

in a CAN network are broadcast from one ECU to the

rest of the ECUs in the network. In fact, the receiver

cannot verify the identity of the sender of the

message as an attacker could have pretended to be

someone else (and therefore sending a message with

an ID the pretender was not configured to send in the

first place). Again, this scenario is called a

masquerade-based attack which then leads to a pos-

sible ―replay‖ attack as the attacker, by pretending to

The state of the art processes, methods, and

tools We are convinced that security can be taken

into ac-count in the early phases of the development

cycle of automotive electronics systems, both by

enforcing software programming standards that

prevent soft-ware defects that may enable cyber-

attacks, as well as by implementing security

mechanisms such as au-thentication that enable the

validation of the identity of the sender to avoid

potentially harmful messages to be

replayed/transmitted across the communica-tion

network. However, even for known vulnerabil-ities,

one has to perform a cost versus benefits anal-ysis as

RESEARCH ARTICLE OPEN ACCESS

B.Vijayalakshmi et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 4), April 2014, pp.135-146

www.ijera.com 136 | P a g e

the communication data rates available are very

limited—it is necessary to evaluate whether a full

authentication-based solution that addresses se-curity

concerns is compatible with performance and

resource cost constraints that are typical of automo-

tive embedded systems and specifically of the pre-

dominant communication protocols used in the vehi-

cle (e.g., CAN has very limited data rates between

33kbps and 500kbps). In fact, authentication mech-

anisms typically require large amounts of processing

power, memory, and bandwidth, in addition to those

already reserved for the messages that are exchanged

across ECUs. As more bytes need to be transmitted,

current bus technologies may not be sufficient given

their already limited available bandwidth.

Authentication mechanisms have been

proposed in the literature. The TESLA protocol [3–5]

uses a time-delayed release of keys for

authentication. A receiver can check the Message

Authentication Code (MAC) after receiving the key

used to compute the MAC. To guarantee security, the

protocol needs to maintain global time and make sure

that a receiver gets a message before the

corresponding key is re-leased. In [6–8], the authors

emphasize the con-straints in an embedded network

and consider a time-triggered (i.e., global time is

available) broadcast pro-tocol. Even with the features

proposed for reduc-ing the number of bits transmitted

and for achieving fault tolerance, two major

challenges exist in apply-ing these approaches to the

CAN protocol. First, the bandwidth available in the

CAN protocol is very lim-ited. Second, there is no

notion of global time in the protocol. The challenge

for OEMs in the automotive industry is to design a

security mechanism for CAN with high security,

combined with minimal communi-cation overhead,

high fault tolerance, low cost, and no global

synchronization clock.

In this paper, we describe a security

mechanism that addresses the requirements stated

earlier. Specifi-cally, our mechanism can be used to

retro-fit the CAN protocol to protect it from cyber-

attacks such as masquerade and replay attack with as

low as pos-sible overhead, and high degree of

tolerance to faults.

We address the low cost requirement by

providing a software-only solution with no additional

hardware required. We focus on the CAN protocol

because it is the most used serial data protocol in

current in-vehicle networked architectures, and it will

likely be used for a long time. We define the attack

scenarios that our security mechanism addresses,

namely mas-querade and replay. We focus on a

security mecha-nism based upon message

authentication and sym-metric secret keys. Our

mechanism leverages and modifies the work

described in [6–8] as we introduce the concept of

counters to implement time-stamping of the message

signatures (MACs) in order to over-come the lack of

global time in the CAN protocol. We do not focus on

the initial security critical key assign-ment and

distribution as this aspect, although very important, is

already being mentioned in [6]. Instead, we focus on

run-time authentication both in the sys-tem steady

state (after ignition key-on and the secu-rity secret

keys have been distributed to the ECUs) and during

running resets experienced by some of the ECUs in

the system (when counters are potentially out of

synchronization). Regarding resets, we dis-tinguish

between ECU running resets or any other ECU

expected low-power modes that occur at rates that do

not allow storing in non-volatile memory (flash) the

most recent sending and receiving coun-ters (needed

for authentication) as this would lead to the flash

being non-operational (e.g., due to burn-ing). We

introduce two mechanisms that cope with these

scenarios, which involve either an ECU that heals

itself or a more drastic system-wide counter re-set (or

re-synchronization). We provide an analysis of the

trade-offs and the benefits versus drawbacks of both

approaches. We also consider potential net-work

faults that could hinder the effectiveness of our

security mechanism—we provide a security mecha-

nism that is fault tolerant. Finally, as we are con-

strained by data rates and by costs, we have defined a

software-only mechanism that does not require ad-

ditional hardware. As security has a cost in terms of

performance (because of the additional bits needed

for signatures and counters) and in terms of poten-tial

hazards that may occur due to poor performance, we

also work on exploring trade-offs between degree of

security and other metrics such as resource uti-

lization. Experimental results show that our security

mechanism can achieve high security level without

in-troducing high communication overhead in terms

of bus load and message latency.

The paper is organized as follows: Section II

defines the system and attacker model; Section III

presents the existing mechanisms, their limitations,

our pro-posed security mechanism, and an evaluation

of the impacts of the security mechanism on the

system bus load and the message latency; Section IV

shows the experimental results, and Section V

concludes this paper.

II. SYSTEM AND ATTACKER

MODEL
We adapt the terminology from [9] to the automo-

tive use case, where a node is one of the computers

(ECUs) connected to the other ECUs in the vehicle

via a serial data communication bus to provide the

following definitions of attack scenarios:

• Modi cation: an unauthorized node changes

B.Vijayalakshmi et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 4), April 2014, pp.135-146

www.ijera.com 137 | P a g e

existing data (e.g., a sender node modifies the

data portion of a communication frame to be

transmitted).

• Fabrication: an unauthorized node generates

additional data (e.g, a sender node creates a new

frame with an ID that the node is not au-thorized

to transmit).

• Interception: an unauthorized node reads data

(e.g., a receiver node accepts a message with an

ID that is not supposed to accept and reads the

data portion of the frame).

• Interruption: data becomes unavailable (e.g., a

sender node sends high priority frames over the

communication bus at a very high rate making it

impossible for other frames to be transmit-ted).

For the sake of our discussion, we generalize

modi-cation and fabrication as an unauthorized write

of data by a node, an interception attack as an unau-

thorized read by a node, and an interruption attack as

a Denial-of-Service (DoS) attack. We now define the

following properties:

• Data integrity: data is not changed (written) or

generated by an unauthorized node.

• Con dentiality: data is not read by an unau-

thorized node.

• Authentication: a receiver or a sender is who it

claims to be.

• Non-repudiation: a sender ensures that a re-

ceiver has received the message, and a receiver is

sure about the identity of a sender.

For automotive electronics systems and the

CAN pro-tocol, data integrity and authentication are

very rel-evant properties which are suitable to our

software-only security mechanism solution. To

prevent an in-terruption attack, hardware protections

are required as, because of the very same nature of

the CAN proto-col (broadcast and multi-master with

arbitration), a malicious node can freely read and

write data from/to the bus. Interruption attacks are

outside of the scope of our work.

Before introducing our attacker model, we

first state our assumptions, and provide definitions

about our system model as follows:

Assumption 1. The network architecture has only one

CAN bus, and all ECUs are connected to the bus

itself.

De nition 1. A node is an ECU.

De nition 2. The sender of a message is the node

sending the message.

Assumption 2. A sender sends a message by

broadcasting it on the CAN bus.

De nition 3. A receiver of a message is a node

receiving the message and accepting it by comparing

the message ID to the list of its acceptable message

ID's
2
.

Note that CAN is a broadcast protocol, so every node

―receives‖ the message, but only receivers (as we

have defined them) accept the message.

Assumption 3. A node can use volatile (RAM) and/or

non-volatile (FLASH) memory to store data. Data

stored in RAM is no longer available after a node

reset; data in FLASH is available after a node resets.

To describe our attacker model, we use a networked

architecture topology as in Figure 1. Although in

CAN, any node can play the role of sender and re-

ceiver in different bus transactions, for illustration

purposes, we assume N1 is a sender node and N2 is a

receiver node. We also assume that N1 and N2 are

legitimate nodes. In Figure 1, if malicious software

takes control of N3, it can access any data stored in

RAM and FLASH, including data used to implement

a security mechanism (e.g., shared secret keys). It is

also possible that an attacker uses a node (N4) that has

been added to the network (e.g., to perform di-

agnostics on the network this node could be laptop

running diagnostic software and connected to the net-

work using the CAN adapter interface); in this case,

the malicious software also has access to the RAM

and FLASH memory. However, no critical data (e.g.,

shared secret keys) is stored in RAM and FLASH in

the first place.

 strong weak

sender receiver attacker attacker

N1 N2 N3 N4

software software software software

RAM RAM RAM RAM

FLASH FLASH FLASH FLASH

Figure 1. Attacker Model.

We are now ready to provide some definitions as fol-

lows:

De nition 4. A strong attacker is an existing node

where malicious software is able to gain control with

full access to any critical data.

De nition 5. A weak attacker is a node where ma-

licious software is able to gain control but no critical

data is available (mainly because it was never stored

in memory).

De nition 6. A legitimate node is a node which is

neither a strong attacker nor a weak attacker.

B.Vijayalakshmi et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 4), April 2014, pp.135-146

www.ijera.com 138 | P a g e

For example, in Figure 1, N3 and N4 are strong and

weak attackers, respectively, and N1 and N2 are le-

gitimate nodes. The possible attack scenarios that N3

and N4 can carry out and that we are addressing with

our solution are:

Types Strong Attacker N3 Weak Attacker N4

Modification

or Scenario 1 Scenario 2

Fabrication

Replay Scenario 3 Scenario 4

In the table, we describe the scenario in which a mes-

sage is supposed to be send by a legitimate sender

(N1). However, N3 and N4 try to alter this situation

with either a strong or weak attack. Again, we are not

addressing attacks such as DoS as they would re-

quire additional hardware—our proposed solution is

software-only. We now explain the scenarios as fol-

lows:

• Scenario 1: this is possible if

important/secret data between N1 and N2 has been

stored in RAM or FLASH of N3. For example, if

impor-

tant/secret data is shared and used by every node in

the network
3
, then N3 can use the data stored in RAM

or FLASH and pretend to be N1 to send a new

message to N2 (fabrication).

• Scenario 2: there is no threat because no

impor-tant/secret data is stored in RAM or FLASH of

N4.

• Scenario 3: this is possible if N3 reads a

message from the CAN bus and then writes the same

message to the CAN bus without any modifi-cation.

Note that, in this case, N3 does not need to get

important/secret data between N1 and N2, e.g., a

secret pair-wise key as in Fig-ure 2, because N2 will

just accept the message thinking it was sent by N1.

• Scenario 4: same as Scenario 3.

We now define a masquerade and replay

attack and show how we can prevent it as follows [7]:

De nition 7. In a masquerade attack, an attacker

(strong or weak) sends a message in which it claims

to be a node other than itself.

Note that a masquerade attack can lead to a fabri-

cation attack, a modification attack, or as a special

case, a replay attack:

De nition 8. A replay attack is enabled by a

mas-querade attack, and the node in order to be

successful, needs rst to pretend to be another node. In

the case of CAN, in a replay attack a node transmits

a copy (replays) of a message it has received from

the CAN bus. The message is not modi ed or altered.

It is merely sent to other nodes by a node that is not

enti-tled to send it. The other nodes have tables that

match the message id to the sender and therefore,

determine the identity of the sender but have no

provision to au-thenticate it.

Since CAN is a broadcast protocol, both a

strong and weak attacker can successfully carry out a

masquer-ade/replay attack if no security mechanism

is put in place, or even if pair-wise keys are used as

the at-tacker would not need them to successfully

carry on the attack. Before introducing some basic

security mechanisms, we also provide a definition of

a false acceptance and a false rejection as follows:

De nition 9. A false acceptance is the scenario that a

node accepts messages which it should reject.

De nition 10. A false rejection is the scenario that a

node rejects messages which it should accept.

By the definition, a successful attack implies

a false acceptance.

III. SECURITY MECHANISMS
In this section, we will first introduce some

basic authentication mechanisms and describe the

exist-ing work in this area in more detail. Then, we

will show the challenges in implementing a security

mechanism for CAN and how we can overcome these

difficulties with our proposal. Finally, we will pro-

vide our counter-based implementation, reset mech-

anisms, and some detailed analysis of their perfor-

mance vs. security levels achieved. We now provide

a few additional definitions that we will use in the

rest of the paper.

Notations Explanations

i the ID of a node

j the ID of a node

k the ID of a message

Ni the node with ID i

Mk the message with ID k

n the number of nodes
n
k the number of receivers of Mk

r
k;s the ID of the s-th receiver of Mk

f the function to compute a MAC

T the time
K
i;j the shared secret key of Ni and Nj

A
k;s the MAC for the s-th receiver of Mk

A the MAC computed by a receiver
C
i;k the counter stored in Ni for Mk

C
M

the most significant bits (MSBs) of a

counter

CL

the least significant bits (LSBs) of a

counter

B.Vijayalakshmi et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 4), April 2014, pp.135-146

www.ijera.com 139 | P a g e

1 BASIC AUTHENTICATION

N1 N2 N3

K
1,2

K
1,3

K
1,2

K
2,3

K
1,3

K
2,3

Figure 2. Pair-wise secret key distribution.

Basic authentication is based on sharing a

secret key between a sender N1 and a receiver N2 and

computing a Message Authentication Code (MAC)

[6] which is essentially a signature of a message. A

key K1;2 is the shared secret key stored in N1 and N2

and only known by N1 and N2. For the sake of the

discussion and without loss of generality, we assume

a pair-wise secret key assignment (an example is

shown in Fig-ure 2). N1 and N2 perform the following

steps to send and receive a message Mk:

Sender (N1)
1

A
k;1

=

f(M

k
; K

1;2
)

2 Send Mk and Ak;1

Receiver (N2)

1 Receive Mk and Ak;1

2 A = f(Mk; K1;2)

3 Accept Mk if and only if A = Ak;1

Note that the ―1‖ of Ak;1 means that N2 is the

first and the only receiver of Mk. Even if N3 is a

strong attacker, since the keys are assigned in a pair-

wise fashion, N3 is not able to compute the MAC (as

it is missing K1;2) that is needed to attack N2 with a

message that is supposed to be sent by N1. However,

since in a broadcast protocol the message transmit-

ted is read by any node in the network, and Mk and

Ak;1 are sent in the clear, N3 could read this data and

resend it verbatim (essentially replay the same

message). N2 is going to accept it as the MAC is a

match. A possible solution to this problem is to use

the concept of global time that allows time-stamping

messages. If global time is adopted then N2 can pre-

vent the attack from N3. An authentication mecha-

nism with global time-stamping as follows:

Receiver (N2)

1 Receive Mk and Ak;1

2 Get sending time T

3 A = f(Mk; T; K1;2)

4 Accept Mk if and only if A = Ak;1

As in the scenario explained earlier, if N3

wants to send Mk to N2, as it cannot retrieve K1;2

because it does not have it, it cannot compute the

correct MAC. In addition, in case of a replay attack,

if N3 replays the message it will do so using a MAC

computed us-ing an earlier time stamp that what N2

would use to compute the MAC. Therefore, the

MACs cannot match, and N2 rejects the message. As

we will show later in this paper, global time is not

available in CAN and therefore we introduce

monotonic counters to address replay attacks.

2 EXISTING WORK

The basic authentication mechanisms have

been sum-marized in the above section, but there are

still other alternatives and variations for

authentication. A lot of existing work focus on digital

signatures. How-ever, digital signatures have very

high communica-tion overhead, making them

inapplicable or at least very difficult to use for CAN.

In [6–8], the authors emphasize the

constraints in an embedded network and consider a

time-triggered (i.e., global time is available)

broadcast protocol. Since every node is a receiver
4
, a

transmitted mes-sage includes MACs for all

receivers. Therefore, N1 and N2 perform the following

steps to send and re-ceive a message Mk:

The authentication operation using the for-

loop uses n since the authors are using a

comprehensive def-inition of receiver. This means

that there are as many receivers as nodes in the

network. Each re-ceiver authenticates the message by

first identifying the correct MAC that the receiver

needs to compare to, based upon the information that

maps each re-ceived message to the unique sender of

the message itself. Besides the authentication aspect,

the au-thors have also introduced other interesting

features to their authentication mechanism to cope

with the potentially limited communication bus data

rate and provide fault tolerance. First, only a subset

of the MAC bits are sent and used for authentication

pur-poses, i.e., A and Ak;j in the above operations are

replaced by [A]l and [Ak;j]l where []l is the trunca-tion

operation to l bits. The authors, in their analysis,

assume that an unsafe state is reached only when at

least k out of n most recently received messages are

successfully attacked. Lastly, in their extension work

B.Vijayalakshmi et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 4), April 2014, pp.135-146

www.ijera.com 140 | P a g e

[8], the authentication is performed by different

voting nodes.

3 CHALLENGES FOR CAN

Even with the features proposed for

reducing the number of bits transmitted and

achieving fault toler-ance, two major challenges exist

in applying the work just described to CAN. First, the

bandwidth available in CAN is extremely limited. In

fact, the maximum and nominal data rate of a CAN

bus is only 500kbps, while each 11-bit ID standard

frame has a maximum total of 134 bits which include

a maximum of 64-bit payload, 46 bits of overhead

(e.g., including CRC bits), and 24 bits for bit-stuffing

[10] in the worst case. If a security mechanism needs

to add MACs to the original frame, as the original

frame might have a 64-bit payload, the frame might

have to be split in two or more frames. This may

result in increasing bus utilization which may result

in a degraded com-munication performance or even

in a unschedulable system. Finally, as stated earlier,

there is no global time in CAN (the global time is

required in [3–8]).

4 OUR SECURITY MECHANISM

The key elements of our proposed security

mecha-nism are stored in each node (in the volatile

and non-volatile memory). The elements are: the ID

table, the pair-wise symmetric secret keys, and

message coun-ters (receiving and sending). In the

following, we use our definition of receivers (see

Definition 3).

• ID table: unlike the approach described in [6– 8],

our mechanism does not use MACs for all nodes.

On the contrary, a sender only computes as many

MACs as the corresponding receivers
5
 of the

transmitted message. This is done by

maintaining a ID table in each node where each

entry is indexed by a message ID — each entry

contains the node ID of the sender and the list of

the node ID’s of the receivers. We define the ID

table with the following function:

(i; nk; rk;1; rk;2; : : : ; rk;nk) = ID-Table(k);

where k is the ID of Mk, i is the ID of the sender of

Mk, nk is the number of receivers of Mk, and rk;s is the

ID of the s-th receiver of Mk. A sender can check its

ID table to deter-mine how many MACs it must

compute, what keys it should use, and what ordering

of MACs it should attach with the message. A

receiver can check the ID table to determine what key

it should use and which MAC included in the

received frame it should select. Again, the ad-vantage

of relying on ID tables is that our mech-anism

reduces the number of MACs because it considers

only the receivers that are accept-ing the frame after

CAN filtering, rather than considering the whole set

of receivers that the frame is broadcast to. This can

reduce the com-munication overhead considerably.

• Pair-wise secret key: a pair-wise key Ki;j is

―shared secret‖ between Ni and Nj for authen-

tication. Every pair of nodes has a shared secret

key which is not known by any other node.

Therefore, any other node cannot mod-ify or

fabricate a message, but a replay attack is

possible as explained earlier. Note that using

pair-wise keys is only a basic key distribution

method. If we want to further reduce the com-

munication overhead, we could a assign nodes to

several groups where each node in a group

shares a secret key. Of course, there is a trade-

off between security and performance (minimiz-

ing communication overhead) in that the secu-

rity level is diminished but the communication

performance is improved.

• Message-based counter: a counter is used to re-

place the global time and prevent a replay at-

tack. Each node maintains a set of counters,

and each counter corresponds to a message,

i.e., Ci;k is the counter stored in Ni for Mk. If the

node is the sender of Mk, its counter value

records the number of times that Mk is sent; if

the node is the receiver of Mk, its counter value

records the number of times Mk has been

received (and accepted after being authenti-

cated). Therefore, if a malicious node replays a

message, a receiver can check the correspond-

ing receiving counter to see if a message is

fresh or not. Because of a network fault, a

receiving counter may not have the same value

as that of its sending counter. In other words, it

is possi-ble that a node sends a frame, updates

its send-ing counter, then a network fault

occurs, e.g., the electrical bus has a transient

fault, and thus the frame never reaches its

destination. There-fore, the receiving node

does not receive the frame and thus does not

increase its receiving counter. This means that

two counters are out of synchronization.

However, our mechanism can deal with this

scenario without any loss of security. We will

explain this aspect later in the paper. We now

provide the following additional definitions:

De nition 11. A sending counter for a message is the

counter stored in its sender.

De nition 12. A receiving counter for a message is the

counter stored in one of its receiver.

In our security mechanism, every node

maintains its ID table, pair-wise keys, and counters.

Ni and Nj perform the following steps to send and

B.Vijayalakshmi et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 4), April 2014, pp.135-146

www.ijera.com 141 | P a g e

receive a mes-sage Mk:

Sender (Ni)

1 (i; nk; rk;1; rk;2; : : : ; rk;nk) = ID-Table(k)
2 C

i;k
=

C
i;k

+ 1

3

∀ s;

1

≤

s

≤

n
k

; A
k;s

=

f(M

k
; C

i;k
; K

i;rk;s
)

4 Send Mk; Ci;k; Ak;1; Ak;2; : : : ; Ak;nk

Receiver (Nj)

1 Receive Mk; Ci;k; Ak;1; Ak;2; : : : ; Ak;nk

2 (i; nk; rk;1; rk;2; : : : ; rk;nk) = ID-Table(k)

3

Continue if and only if find s; 1 ≤ s ≤ nk; j =

rk;s

4 Continue if and only if Ci;k > Cj;k

5 A = f(Mk; Ci;k; Ki;j)

6 Accept Mk and Cj;k = Ci;k if and only if A = Ak;s

Based on this mechanism, our security

mechanism can protect any masquerade attack and

replay at-tack. We prove our claim using the

following three scenarios:

• If an attacker sends a message which is not sup-

posed to be received by the receiver, then the

receiver will reject the message in Line 6 by

checking its ID table.

• If an attacker sends a message which is not sup-

posed to be sent by the attacker, and it is a replay

attack, then the receiver will reject the message

in Line 2 by checking the counters.

• If an attacker sends a message which is not sup-

posed to be sent by the attacker, and it is not a

replay attack, then the receiver will reject the

message in Line 12 by comparing the MACs.

5 COUNTER IMPLEMENTATION

These operations can meet the requirements

stated by our problem formulation. However, the

number of bits used for the counter must be explored.

If the number of bits is not sufficient during the life-

time of a vehicle, then the counter may overflow. For

example, if the counter stored at the receiving side

overflows and resets to zero, then the replay attack

may succeed as the attacker just needs to wait for this

event to happen, and therefore resend a counter

which is larger than the reset counter stored in the

receiver; if the number of bits used for the counter is

too large, then the bus will be overloaded. Therefore,

we propose a solution where the counter C is divided

into two parts: the most significant bits (MSBs) C
M

and the least significant bits (LSBs) C
L
—only C

L
 is

transmitted with the message. The steps performed

by Ni and Nj are similar, but only Ci;k
L
 is transmit-ted:

For more details, the reader should see Figure 3. If

Ci;k
L
 > Cj;k

L
, then this is the same scenario as that of

the original mechanism; if Ci;k
L
 ≤ Cj;k

L
, then the

receiver will use Cj;k
M

 + 1 to compute the MAC. If

there is a replay attack, then the receiver will test Cj;k
L

= C
L
 to be true and use Cj;k

M
 + 1 to compute the

MAC which will be different from the one transmitted

in the replayed message. The receiver will fail the

test comparing the stored computed MAC and the

received MAC and will reject the message.

The advantage of using this mechanism is

that we can reduce the communication overhead

without any loss of security. Of course, if the receiver

consecu-tively misses several messages due to a

network fault, it may reject a message although there

is no attack in place, as its receiving counter may not

be up-to-date (out of synchronization). However, the

proba-bility that a counter is out of synchronization is

very low. If a counter is divided into C
M

 and C
L
 and

the probability of a network fault is q, the probability

that a counter is out of synchronization is q
2jCLj

 . For

example, if |C
L
| = 3 and q = 0:1, the probabil-ity that

a counter is out of synchronization is only 0:1
8
. Even

if this scenario occurs and the computed MAC would

not match although it would pass the counter test, the

receiver will continue rejecting mes-sages (false

rejection). Although this scenario is not optimal, a

counter out of synchronization is a better option than

a successful attack. In addition, we ad-dress this

B.Vijayalakshmi et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 4), April 2014, pp.135-146

www.ijera.com 142 | P a g e

potential issue by providing counter reset

mechanisms. This is the focus of the next section in

the paper.

Figure 3. The steps performed by a receiver Nj of a

message Mk sent by a s

6 COUNTER RESET MECHANISMS

A counter reset mechanism is required to

deal with an ECU hardware reset or with counters

that are out of synchronization because of a network

fault. There are two types of hardware resets. First,

either an ECU may reset as expected, e.g., as it goes

into a low power mode as a result of a specific

driving mode in which some ECUs are shut off to

reduce the energy usage, or the ECU experiences an

unexpected hardware re-set due to a power failure.

Regardless of the reason why an ECU resets, the rate

at which the resets occur or the minimum time

interval between them might be too short to allowing

storing critical data into FLASH which could be

restored at a later time, as storing data in the FLASH

too frequently (at a rate that is higher than of the

expected maximum rate of resets) may lead to

burning the FLASH itself. Therefore, we have

devised mechanisms that deal with scenar-ios where

critical data such as updated counter values cannot be

stored in FLASH at a rate that makes them

sufficiently up-to-date (or close to) to avoid excessive

false rejections on the receiver side when they are

later restored into RAM. When data can be copied to

FLASH the mechanism is simple. Before an expected

shutdown, or change of power state, the ECU copies

and stores the relevant data in FLASH from RAM. At

wake-up, the ECU restores the data from FLASH into

RAM. However, unexpected shutdowns can oc-cur

when a hardware failure occurs, or there is a lack of

power, etc. In this case, it is not safe to assume that

critical data was stored in FLASH and that can be

restored. Therefore, provisions have to be put in

place to bring back the ECU, and therefore the sys-

tem, to a secure state (e.g., with counter values that

prevent attacks). Our mechanisms that deal with un-

expected hardware resets include ―node self-healing‖

and ―network-wide‖ counter resets. The mechanisms

provide trade-off s between security levels and com-

munication overhead. In the following, we describe

the self-healing mechanism operations performed by

a node that has experienced a hardware reset.

1. The node sets a FLAG variable to zero.

2. The node stores its counters into FLASH every P

seconds. The time interval P is a function of the

FLASH technology.

3. If a node is experiencing an expected hardware

reset, then the node tries to store the latest

counters value from RAM to FLASH before

shutting down. If the operation is successful (it

may not be if the FLASH controller refuses to

allow it because of potential burning), then

FLAG should be set to 1. If not, the remain-ing

steps are the same of those taken in case of an

unexpected hardware reset due to a power

failure.

4. If a node reset unexpectedly, nothing can be

guaranteed including storing data to FLASH,

therefore the FLAG stays at zero.

5. When a node wakes up, if FLAG = 1, it

restores all counters from FLASH and set

FLAG = 0; if FLAG = 0, it restores all counters

from FLASH (last counters saved) and increase

them by Q, and stores them into FLASH.

P is a parameter that depends upon the FLASH tech-

nology. There is a trade-off between data freshness

and expected life of the FLASH memory. Q is the

upper bound of the number of messages that could be

sent within the time interval P to prevent a replay

attack—diff erent counters can be associated with dif-

ferent values of Q for diff erent messages.

Since the value of Q is an estimate provided

by the designer of the number of messages instances

received during P , it is possible that this value is not

the real upper bound or worst case number of

message in-stances sent during P . Hence, a larger Q

value than the real one may lead to false rejections,

meaning to a situation where a receiving node has a

receiv-ing counter that is higher than the counter

being re-ceived although it should not be. In this

case, the receiving node may reject message

instances even if it should not until the sender counter

reaches the receiver stored counter value.

Conversely, if Q is smaller than what it should be,

then the receiver will accept message instances it

should not (false accep-tances). In both cases, the

designer is expected to tune the value of Q off -line.

The advantage of this mechanism is that at wake-up

following a node re-set, a node resets its counters by

itself without the need of additional messages to reset

the counters of other nodes. Therefore, the

B.Vijayalakshmi et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 4), April 2014, pp.135-146

www.ijera.com 143 | P a g e

communication overhead is minimized as no

network-wide counter synchroniza-tion is necessary.

However, as the parameter Q is an estimate, potential

false rejections or, even worse, false acceptances may

occur.

Besides the self-healing reset mechanism, we also

pro-pose a network-wide reset mechanism. The key

con-cepts are:

• A RESET message to set all counters of all

nodes to 0.

• A REQUEST message to achieve fault toler-

ance.

• New session keys to prevent replay attacks.

In this mechanism, because every counter is reset to

0, new session keys are required; otherwise, an at-

tacker could successfully replay-attack. Therefore, a

random generated number needs to be included in a

RESET message, as it is used to generate the new

session key for each node. We can further divide this

into two possible approaches. The first one is a ―dy-

namic‖ network reset where any node experiencing a

reset can generate a random number and send a

RESET message to all other nodes. The second ap-

proach is a ―static‖ network reset where only one spe-

cial master node can generate a random number and

send a RESET message to all other nodes.

Figure 4. The finite state machine of a node in the

dynamic network reset.

The finite state machine of a node in the dynamic

network reset is shown in Figure 4. This approach

has the following features:

• Every node needs to maintain a variable FLAG

to indicate if it is the last node generating the

random number X and sending the RESET

message.

• If a node experiences a reset (goes to the re-set

state), then it will set all counters to 0, set

FLAG to 1, generate a random number X and

its new session keys, and send a RESET mes-

sage with X.

• If a node receives a RESET message, then it

will set all counters to 0, set FLAG to 1, and

generate its session keys.

• If a node finds itself out of synchronization

(missing a RESET message due to network

fault), then it will send a REQ message to ask

for going back to synchronization.

If a node receives a REQ message, then it will

check if FLAG is 1. If yes, it is the last node

generating X and sending the RESET message, so it

will resend a RESET message.

Figure 5. The finite state machine of a master node

in the static network reset.

Figure 6. The finite state machine of a non-master

node in the static network reset.

The finite state machine of a master node in

the static network reset is shown in Figure 5; the

finite state machine of a non-master node in the static

network reset is shown in Figure 6. The diff erences

between static and dynamic resets are as follows:

• A node does not need to maintain a variable

FLAG because only the master node can gener-

ate a random number and send a RESET mes-

sage.

• A REQ0 message is used by a non-master node

to ask the master node to reset the network.

• If a non-master node experiences a reset, then

it will send a REQ0 message and wait for a

RE-SET message.

• If a master node receives a REQ0 message, it

will set all counters to 0, generate a random

number X and its session keys, and send a RE-

SET message with X.

B.Vijayalakshmi et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 4), April 2014, pp.135-146

www.ijera.com 144 | P a g e

Although the network-wide reset mechanism

can guarantee that there is no false rejection or

success-ful replay attack, it may determine high

transient bus peak loads due to the increasing traffic

created by the messages used to reset the counters in

every node.

To this point, we have proposed a self-

healing and a network-wide (static or dynamic

master) reset mech-anism. Both mechanisms provide

advantages and dis-advantages in terms of security

level and bus utiliza-tion. In a real case, maybe a mix

of them could be applied, depending on the

requirements on the com-munication resource, its

available capacity in terms of its data rates, and the

secure criticality level of each message.

7 ANALYSIS

We show how the security mechanism has

an impact on the system bus load and message

latencies by for-mulating the problem as a feasibility

analysis prob-lem. The system model includes the

following param-eters:

• n: the number of messages.

• q: the probability that a message is missing due

to a network fault.

• R: the bus data rate.

The following message Mk parameters are defined:

• nk: the number of the message receivers.

• Rk: the message rate (frequency, as the inverse

of its period).

• Sk: the message original size.

• Lk: the upper-bound of the total length of

MACs and LSB of the counter.

• Ck: the lower-bound of the length of LSB of the

counter.

• Pk: the upper-bound of the probability of a suc-

cessful attack.

• Qk: the upper-bound of the probability that a

counter is out of synchronization.

If Mk is not a security-critical message, then Ck = 0

and Pk = Qk = 1.

We define the following decision variables:

• xk: the length of the MAC for Mk.

• yk: the length of the LSB of the counter for Mk.

We define several constraints for Mk as follows:

• The length of LSB of the counter should be

larger than or equal to Ck.

• The probability of a successful attack should be

smaller than or equal to Pk.

• The probability that a node is out of synchro-

nization should be smaller than or equal to Qk.

The constraints in mathematical forms are defined as

follows:

xk + yk ≤ Lk;

yk ≥ Ck;

2
x
k

≤
P ;

q
2

y

k

k

 ≤ Qk:

The last two constraints also define the

probability of a false acceptance (a node accepts

messages which it should reject) and a false rejection

(a node rejects messages which it should accept). We

can easily de-rive the minimal values of xk and yk and

then com-pute the message latency using the equation

[11]:

lk = B +
∑ (

⌈ lkRi⌉
S
i

+

n
i
x
i

+

y
i

)
; R

i2hp(k)

where lk is the latency of Mk, B = maxi
Si+nixi+yi

 ,

R

and hp(k) is the index set of messages with higher

priorities than Mk. By using a traditional fix-point

calculation, the latency is computed through an iter-

ative method until convergence (if a solution exists).

IV. EXPERIMENTAL RESULTS
In this section, we show how our security

mechanism impacts on the system bus load and

message latency. Since there is no global time in

CAN, the approaches in [3–8] are not applicable to

CAN networks. We used a test case with 17 security-

critical messages among 138 messages, and q = 0:1,

R = 500 (kbps), Lk = 32 (bits), Ck = 1 (bit) for all

security-critical messages. Table 1 and Table 2 show

the relative bus load and av-erage latency with

diff erent values of P and Q, where Pk = P and Qk = Q

for all k, under the assump-tions that the nk is 1 or 3.

The number of receivers was not known at the time

of our experiments, so we have used a simple

assumption. If this information is provided, more

general experiments can be done by assigning

diff erent values for Pk and Qk for dif-ferent k. Again,

the main purpose of this paper is to provide a security

mechanism and show how the

B.Vijayalakshmi et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 4), April 2014, pp.135-146

www.ijera.com 145 | P a g e

Table 1: The relative bus load and average message latency under nk = 1 and diff erent values of P and Q where

―—‖ means that there is no feasible solution. Without the security mechanism, the original bus load 376.44kbps

and average message latency 11.535ms are both scaled to 1.

 Q

P 10
1
 10

4
 10

7
 10 10 10 13

 Load Avg L. Load Avg L. Load Avg L. Load Avg L. Load Avg L.

10
1
 1.0244 1.0506 1.0263 1.0571 1.0282 1.0591 1.0300 1.0625 1.0300 1.0795

10
2
 1.0413 1.0832 1.0432 1.0883 1.0451 1.0968 1.0469 1.0987 1.0469 1.1164

10
3
 1.0582 1.1213 1.0601 1.1232 — — — — — —

10
4
 — — — — — — — — — —

Table 2: The relative bus load and average message latency under nk = 3 and diff erent values of P and Q where

―—‖ means that there is no feasible solution. Without the security mechanism, the original bus load 376.44kbps

and average message latency 11.535ms are both scaled to 1.

on the bus load, the average message latency, or the

message latency (deadline) for each message, then

we can check if the security mechanism can be

applied or not. As shown in Table 1, when nk = 1, if

we want to make sure that the probability of a

success-ful attack and the probability that a node is

out of synchronization are both bound by 10
4
, then

there is a 3% increase on the bus load and a 6.25%

increase on the average message latency. Note that,

in some cases where the values of P and Q are both

large, there is no feasible solution. For our

experiments, we show that we can achieve a very

high security level (e.g., P (successful attack) ≤ 10
8
),

with a bus load or average message latency

increasing less than 6% and 14%, respectively.

However, as shown in Table 2, when nk = 3, we can

see that the feasible region is reduced. This is

because it needs 3 MACs, but there are only at most

Lk − Ck bits available.

V. CONCLUSIONS
We described a security mechanism that can

be used to retro-fit the CAN protocol to protect it

from cyber-attacks such as masquerade and replay

attacks. The mechanism is suitable for this protocol

because it has a low communication overhead and

does not need to maintain global time. Besides, the

solution is software-only, hence, it is not overly

expensive to implement. Experimental results

showed that our security mechanism can achieve high

security level without introducing high

communication overhead in terms of bus load and

message latency.

VI. ACKNOWLEDGEMENTS
We would like to thank our Guide Mr

K.Kumar assistant Professor Veltech University for

the valuable discussions and feedback.

 Q

P 10 1 10 4 10 7 10 10 10 13

 Load Avg L. Load Avg L. Load Avg L. Load Avg L. Load Avg L.

10 1 1.0094 1.0241 1.0113 1.0267 1.0131 1.0288 1.0150 1.0322 1.0150 1.0488

10
2
 1.0150 1.0322 1.0169 1.0394 1.0188 1.0425 1.0206 1.0445 1.0206 1.0612

10
3
 1.0206 1.0445 1.0225 1.0481 1.0244 1.0506 1.0263 1.0571 1.0263 1.0741

10
4
 1.0282 1.0591 1.0300 1.0625 1.0319 1.0646 1.0338 1.0668 1.0338 1.0839

10
5
 1.0338 1.0668 1.0357 1.0733 1.0375 1.0767 1.0394 1.0789 1.0394 1.0962

10
6
 1.0394 1.0789 1.0413 1.0832 1.0432 1.0883 1.0451 1.0968 1.0451 1.1144

10
7
 1.0469 1.0987 1.0488 1.1007 1.0507 1.1040 1.0526 1.1061 1.0526 1.1238

10
8
 1.0526 1.1061 1.0544 1.1129 1.0563 1.1181 1.0582 1.1213 1.0582 1.1393

10
9
 1.0582 1.1213 1.0601 1.1232 — — — — — —

10 10 — — — — — — — — — —

B.Vijayalakshmi et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 4), April 2014, pp.135-146

www.ijera.com 146 | P a g e

References
[1] K. Koscher, A. Czeskis, F. Roesner, S.

Patel, T. Kohno, S. Checkoway, D. McCoy,

B. Kan-tor, D. Anderson, H. Shacham, and

S. Savage, ―Experimental security analysis

of a modern au-tomobile,‖ in IEEE

Symposium on Security and Privacy, pp.

447–462, 2010.

[2] M. Wolf, A. Weimerskirch, and C. Paar,

―Secu-rity in automotive bus systems,‖ in

Workshop on Embedded Security in Cars,

2004.

[3] A. Perrig, R. Canetti, D. Song, and D. Ty-

gar, ―Efficient authentication and signing of

mul-ticast streams over lossy channels,‖ in

IEEE Symposium on Security and Privacy,

pp. 56–73, 2000.

[4] A. Perrig, R. Canetti, D. Song, and D.

Tygar, ―Efficient and secure source

authentication for multicast,‖ in Network

and Distributed System Security Symposium,

pp. 35–46, 2001.

[5] A. Perrig, R. Canetti, D. Song, and D.

Tygar, ―The tesla broadcast authentication

protocol,‖ in RSA Cryptobytes, pp. 2–13,

2002.

[6] C. Szilagyi and P. Koopman, ―A flexible ap-

proach to embedded network multicast

authenti-cation,‖ in Workshop on Embedded

Systems Se-curity, 2008.

[7] C. Szilagyi and P. Koopman, ―Flexible

multicast authentication for time-triggered

embedded con-trol network applications,‖ in

IEEE/IFIP Inter-national Conference on

Dependable Systems and Networks, pp.

165–174, 2009.

[8] C. Szilagyi and P. Koopman, ―Low cost

multi-cast authentication via validity voting

in time-triggered embedded control

networks,‖ in Work-shop on Embedded

Systems Security, 2010.

[9] S. Shenker and I. Stoica, ―Security,‖ in

Slides of Lectures 13 and 14, CS 194:

Distributed Sys-tems, University of

California, Berkeley, 2005.

[10] Bosch, Controller Area Network, Speci

cation 2.0, 1991.

[11] M. D. Natale, H. Zeng, P. Giusto, and A.

Ghosal, ―Worst-case time analysis of can

messages,‖ in Understanding and Using the

Controller Area Network Communication

Protocol. Springer, pp. 43–65, 2012.

